
Wavelet Compression Technique for High-Resolution Global Model Data on an
Icosahedral Grid

NING WANG, JIAN-WEN BAO, JIN-LUEN LEE, FANTHUNE MOENG, AND CLIFF MATSUMOTO

NOAA/Earth System Research Laboratory, and Cooperative Institute for Research in the Atmosphere,

Colorado State University, Boulder, Colorado

(Manuscript received 21 November 2014, in final form 16 June 2015)

ABSTRACT

Modern Earth modeling systems often use high-resolution unstructured grids to discretize their hor-

izontal domains. One of the major challenges in working with these high-resolution models is to effi-

ciently transmit and store large volumes of model data for operational forecasts and for modeling

research.

A newly developed compression technique is presented that significantly reduces the size of datasets

produced by high-resolution global models that are discretized on an icosahedral grid. The compression

technique is based on the wavelet transform together with a grid rearrangement algorithm and precision-

controlled quantization technology. The grid rearrangement algorithm converts an icosahedral grid to a set of

10 rhombus grids that retain the spatial correlation of model data so that a three-dimensional wavelet

transform can be effectively applied. The precision-controlled quantization scheme guarantees specified

precision of compressed datasets.

The technique is applied to the output of a global weather prediction model, the Flow-Following, Finite-

Volume Icosahedral Model (FIM) developed by NOAA’s Earth System Research Laboratory. Experiments

show that model data at 30-km resolution can be compressed up to 50:1 without noticeable visual differences;

at specified precision requirements, the proposed compression technique achieves better compression com-

pared to a state-of-the-art compression format [Gridded Binary (GRIB) with JPEG 2000 packing option]. In

addition, model forecasts initialized with original and compressed initial conditions are compared and as-

sessed. The assessment indicates that it is promising to use the technique to compress model data for those

applications demanding high fidelity of compressed datasets.

1. Introduction

Rapid increases in computing power and steady ad-

vances in numerical simulation techniques have made it

possible to create global high-resolution atmospheric

models for operational use. Several atmospheric models

with sub-10-km horizontal resolutions are currently

under development and are expected to be put into

operational use within a decade (Satoh et al. 2008; Jung

et al. 2012; Skamarock et al. 2012; Lee and MacDonald

2009). One of the major challenges to the archival and

distribution of numerical forecasts from these high-

resolution global models is their large data sizes. Datasets

produced by these models typically have sizes in tens to

hundreds of gigabytes.Efficient transmission and storageof

these datasets poses a practical and important problem

for both operational and research communities.

Efforts have been made to compress high-resolution

model data on Cartesian grids in two of the most widely

used data formats for geoscience data—Network Com-

monData Form (netCDF) andGriddedBinary (GRIB).

The latest netCDF format, version 4 (netCDF4), uses

LZ77 lossless compression (Ziv and Lempel 1977); and

theGRIB format allows users to combine a conservative

rounding of field data with a selectable lossless com-

pression (packing) scheme in its new, second, edition

(GRIB2; Dey 2007). The LZ77 compression available in

netCDF4 achieves moderate compression with no pre-

cision loss to the original datasets, while rounding plus

a lossless data compression used inGRIB2 achievesmore

significant compression at the expense of some precision

loss.

In this article, we present a new lossy wavelet data

compression technique with precision control to compress
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datasets generated by numerical models discretized on

an icosahedral grid.

Wavelet transform–based data compression tech-

niques developed in the past two decades have proven to

be effective for image and video data compression

(DeVore et al. 1992; Shapiro 1993; Said and Pearlman

1996; Tian and Wells 1996; Topiwala 1998). A typical

wavelet compression scheme involves awavelet transform, a

corresponding quantization procedure, and an optional

lossless entropy encoding. Through a careful selection of

the algorithm and implementation of each component,

wavelet data compression achieves superior perfor-

mance over most other compression techniques (Strang

and Nguyen 1998; Daubechies 1992; Donoho 1993). The

technique has been extended and applied to general

datasets on Cartesian lattices, particularly numerical

datasets from scientific computations. One important

extension to the lossy wavelet compression technique for

scientific datasets is its ability to guarantee the precision

of the reconstructed dataset, that is, to control the max-

imum error of compressed data at any individual data

point. Since the late 1990s, the wavelet compression

technique has been used in an Internet-based meteoro-

logical workstation to transmit satellite images andmodel

products over communication channels of limited band-

width (Wang andMadine 1998). The precision-controlled

wavelet compression technique has been proposed to

compress high-resolution regional model data for trans-

mission and archival purposes (Wang andBrummer 2003;

Lucero et al. 2004). Recently, the GRIB2 format added

an option to encode Cartesian datasets with rounding

plus a lossless wavelet compression (JPEG 2000), which

is a type of precision-controlled wavelet data compres-

sion as well.

Modern high-resolution global gridpoint models are

often based on unstructured grids, such as icosahedral or

cubed-sphere grids, for computational efficiency and

better numerical treatment of high-latitude regions

(Majewski et al. 2002; Tomita et al. 2004; Putman and

Lin 2009). To compress model data on an unstructured

spherical grid, one would naturally consider using a

spherical wavelet (Schröder and Sweldens 1995; Lessig

and Fiume 2008) for the horizontal transform and a

classic one-dimensional wavelet for the vertical trans-

form. However, the numerical properties of the exist-

ing spherical wavelets constructed on the icosahedral

grid are not ideal for data compression. Therefore, we

propose an alternative approach to conduct the hori-

zontal transform. We arrange the unstructured icosa-

hedral grid into a set of 10 rhombus subgrids that are

isomorphic to a Cartesian grid and conduct the wavelet

transform in three-dimensional space for each subgrid,

using a three-dimensional separable transform (Mallat

1989). Details concerning this choice are discussed in

section 2.

Precision-controlled compression, with or without

wavelet transform, provides adequate fidelity of com-

pressed datasets for most meteorological applications,

as evidenced by the popular use of the GRIB, edition 1

(GRIB1) format and the recent introduction of the

GRIB2 format. Those applications include visualiza-

tions of satellite and model products at local scales and

numerical computations that generate derived prod-

ucts. However, one important measure of the fidelity

of compressed model datasets is their ability to re-

produce numerical forecasts when the compressed

datasets are used as initial model states. This is a more

stringent criterion, because during numerical simula-

tions, small differences at the initial time can be ampli-

fied and can potentially cause the numerical forecasts to

differ noticeably, especially after an extended period of

simulation. On the other hand, if consistent forecasts can

be produced from both original and compressed initial

conditions, and these forecasts show no noticeable dis-

crepancy, then it can be further ensured that the com-

pressed datasets maintain high fidelity and have an

inconsequential loss of information content. Therefore,

these compressed datasets can potentially be used in even

the most fidelity-demanding numerical computations.

Preliminary numerical experiments show that the

proposed data compression technique is effective for

model data on icosahedral grids. It reduces data volume

dramatically for forecast datasets used by visualization

applications, since these applications can tolerate more

precision loss, as long as no noticeable visual differences

appear in the rendered products. The technique achieves

significant compression with commonly used pre-

cision specifications for meteorological datasets, and it

has a better compression performance compared to

GRIB2 (with JPEG2000 packing option). When used

in a global icosahedral grid model, the Flow-Following,

Finite-Volume Icosahedral Model (FIM), the com-

pressed initial conditions produce no noticeable visual

differences in 120-h forecasts compared to the forecasts

produced with the original uncompressed initial condi-

tions. These experiments demonstrate that the proposed

data compression technique provides a practical solu-

tion to the compression of high-resolution icosahedral

grid data. They also indicate that the proposed data

compression scheme offers a promising alternative to the

currently adopted compression schemes that use lossless

compression or rounding plus lossless compression.

The article is presented as follows. Section 2 describes the

compression technique for icosahedral grid data, including

discussions of the wavelet transform of model data on an

icosahedral grid and the algorithm for precision-controlled
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lossy compression. Section 3 presents a series of experi-

ments that evaluate the compression performance of the

technique. In section 4, two cases of weather forecasts

initialized with the original and compressed initial con-

ditions are examined and compared to assess the impact

of data compression of initial states on the numerical

simulations. In section 5, a summary of the compression

technique and its experiment results is presented, fol-

lowed by a brief discussion of future work.

2. Wavelet compression technique for icosahedral
grid data

In this section, we present the compression technique

developed for model data defined on an icosahedral grid.

a. Wavelet transform

A discrete wavelet transform (DWT) is the foundation

for wavelet data compression. Like any transform-based

data compression, a wavelet transform decorrelates

spatially correlated data points to obtain better energy

compaction in its coefficient representation, which leads

to more efficient quantization, and therefore better data

compression. For datasets defined on a Cartesian lattice, a

separable wavelet transform is very effective and often

used. The separable wavelet transform uses the wavelet

defined on the real line and applies it repeatedly to each

dimension (Mallat 1989). However, for datasets defined

on an unstructured grid on the sphere, such as an ico-

sahedral grid, one cannot use this approach directly.

A wavelet can also be constructed on a general man-

ifold, such as a sphere using a numerical technique called

the ‘‘lifting scheme’’ (Sweldens 1997; Schröder and

Sweldens 1995). Discrete spherical wavelets have been

constructed with this scheme and are used in computer

graphics to code three-dimensional geometric meshes of

given objects. The construction of spherical wavelets

usually takes advantage of the fact that spherical meshes

are often created with recursive subdivisions of faces of

inscribing regular polygons. Taking icosahedral grids

(Baumgardner and Frederickson 1985) for example,

spherical wavelets of different scales can be defined and

located at the grid points of different refinement levels.

From this perspective, it seems that a spherical wavelet

could be a natural choice to conduct wavelet transforms

for icosahedral grid data. However, spherical wavelets

constructed with the lifting scheme have several limita-

tions for data compression. These spherical wavelets

often lack some of the important mathematical prop-

erties for data compression—regularity, a reasonable

number of vanishing moments, symmetry, and un-

conditional basis in L2(S2, dv) function space (Donoho

1993; Sweldens 1997; Lessig and Fiume 2008). Further-

more, to improve some of these properties, symmetry,

for example, requires changing the gridpoint locations,

which is not feasible because gridpoint locations are

determined and optimized for model numerics (Heikes

and Randall 1995; Tomita et al. 2001; Du and Ju 2005;

Wang and Lee 2011). Finally, these spherical wavelets

do not have an efficient and performance-proven

quantization scheme for their coefficients.

On the other hand, compactly supported orthogonal or

biorthogonal wavelets on the real line (and on multidi-

mensional Cartesian space) have been well studied

FIG. 1. Icosahedral grid. (left) The 10 rhombi flattened to the plane, where each pair of arrows points to two

coincident geodesic edges on the sphere. (right) The icosahedral grid on the sphere. The rhombus with additional

triangle mesh in the right plot corresponds to the rhombus highlighted by the darker shade in the left plot.
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theoretically and experimented numerically (Daubechies

1992; Antonini et al. 1992; Donoho 1993). The Cohen–

Daubechies–Feaveau biorthogonal wavelet with (9, 7)

taps (CDF97) (Cohen et al. 1992), for example, has

proven to be an effective wavelet to use for separable

wavelet transforms in data compression. It hasmost of the

desired mathematical properties for data compression and

has been used in data compression for two-dimensional

imagery, three-dimensional video streams, and high-

dimensional numerical datasets. In addition, there are sev-

eral mature quantization schemes developed for wavelet

coefficients onCartesian lattices that canbe adopteddirectly.

Therefore, we propose to rearrange the icosahedral

grid points into a set of 10 rhombus subgrids on the

sphere and to apply a separable three-dimensional

wavelet transform to the grid data on these grids using

the CDF97 wavelet. It is true that grid points within each

subgrid are not perfectly regular and that grid lines are

skewed (not orthogonal) compared to a regular lattice

on a two-dimensional plane. Nonetheless, these subgrids

are sufficiently regular in terms of the geodesic distances

between adjacent grid points (section 2b). Therefore, a

separable wavelet transform can still be effectively ap-

plied to the data on these subgrids.

b. Grid rearrangement

An icosahedral grid with l levels of subdivision

refinements (commonly referred to as ‘‘grid level l

icosahedral grid,’’ or ‘‘Gl icosahedral grid,’’ for short) has

103 22l 1 2 grid points (Baumgardner and Frederickson

1985).1 Excluding the two pole grid points, one can

partition the entire grid into exactly 10 subgrids, each

containing 22l grid points. The natural regular subgrids

of an icosahedral grid are its initial 20 spherical tri-

angular grids, which can be combined into 10 spherical

rhombus grids (Fig. 1). Since each spherical rhombus

grid mesh covers an adequately large area (one-tenth

of the sphere), it could be a good partition for a two-

dimensional separable wavelet transform.

Figure 1 illustrates how an icosahedral grid is parti-

tioned into 10 rhombi. Each rhombus mesh, disregard-

ing the edges that are parallel to the triangle side shared

by two initial triangles, is isomorphic to a planar graph

regular square lattice. Thus, it can be treated as a Car-

tesian grid on the plane for data compression purposes.

In addition, these lattices are quite regular and rather

uniform. In fact, depending on the construction algo-

rithm for the icosahedral grid, the ratios between the

maximum and minimum geodesic distances between

adjacent grid points in the grid is bound by a constant

FIG. 2. Compression and decompression schemes.

1 Here a bisection subdivision for all refinement levels is as-

sumed. When an arbitrary m section is used during subdivision

refinement, the formula should be modified accordingly.
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ranging from 1.17 to 1.19 (Wang and Lee 2011), which

is a desirable property for separable wavelet transforms.

In the proposed compression scheme, we arrange the

entire icosahedral grid into 10 rhombus lattices of 22l

grid points, to which a traditional wavelet compression

for Cartesian datasets is applied. For the remaining two

polar grid points, a lossless data compression is used to

encode them separately.

c. Precision control of the compressed dataset

In lossy data compression, the fidelity of a compressed

dataset is usually measured with theLp norm in an error

vector space:

kEkp5
�
�
n

i51

jf (xi)2 ~f (xi)jp
�1/p

,

with

kEk‘ 5 max
1#i#n

jf (xi)2 ~f (xi)j ,

where f (xi) is the function value at discretized location

xi, ~f (xi) is the lossy compressed function value, and n is

the number of discrete data points. The norm kEkp is

referred to as the p norm error metric.

Commonly, an L2 norm error metric kEk2 is used in

image data compression. It measures an average or

overall fidelity of the compressed image data. Physically, it

alsomeasures the degree of energy conservation. In signal

processing kEk2 is directly related to the peak signal-to-

noise ratio (PSNR), which is commonly used to indicate

the quality of a signal. For scientific data, in addition to

kEk2, we would like to retain a specified precision for

every data point, that is, to have a bound on themaximum

error for compressed datasets. Thus, the L‘ norm error

metric kEk‘ is used as well to ensure the fidelity of the

compressed scientific dataset.

Lossy data compression schemesbasedon (bi)orthogonal

transform are naturally designed to minimize the dis-

tortion (error) in terms of kEk2. After transform, a

critical procedure called ‘‘quantization’’ is applied to

the coefficients to reduce bitrate and achieve data

compression. This procedure introduces quantization

error to the compressed datasets. To control the

physical domain kEk2 in the transformed domain is al-

gorithmically straightforward, because kEk2 is invariant

under an orthogonal transform (and it is practically near

invariant under a biorthogonal transform), and kEk2 is

additive in both physical and transformed domains. For a

given function f,

�
n

i51

[ f (xi)2
~f q(xi)]

25CR �
n

i51

[ f̂ (vi)2
ê
f q(vi)]

2 , (1)

and

A#CR#B ,

where f̂ denotes the transform of function f, vi denotes

the wavelet index to the scale-spatial lattice, ~f q denotes

approximation of function f by quantization, and A, B

are frame bounds (Riesz bounds). For orthogonal

transform we have the equality A5CR 5B5 1:0, and

for biorthogonal transform using popular CDFwavelets,

we have a CR 2 [A, B] that is usually close to 1.0. (de

Saint-Martin et al. 1999; Cohen et al. 1992).

Therefore, in L2 norm, we can directly measure and

reduce the distortion of ~f (x) in the transformed domain

by measuring and reducing the distortion of
ê
f (v).

However, assessing and controlling distortion in kEk‘,
in the transformed domain, is not so simple. The error

metric kEk‘ is not invariant under (bi)orthogonal

transform, and it is not additive in either domain. A few

attempts have been made to solve the problem theo-

retically or practically (Karray et al. 1998; Marpe et al.

2000; Yea and Pearlman 2006). One can derive the

minimum size of the quantization step in the trans-

formed domain for a particular wavelet such that a

specified kEk‘ is satisfied. The problem of that approach

is ‘‘overcoding,’’ meaning that compression uses a much

higher bitrate than necessary due to the conservative

size of the derived minimum quantization step. The

difficulty in applying quantization in the transformed

domain alone leads to a two-domain (transform domain

plus physical domain) quantization approach (Ansari

et al. 1998; Yea and Pearlman 2006). The idea of the

approach is to take advantage of the quantization effi-

ciency in both transformed and physical domains to

achieve a better bitrate for a given kEk‘ requirement.

Research on two-domain quantization been has focused

on the selection of quantization schemes and bit allo-

cation algorithms for the two domains. For the data

compression task for high-resolution model data, an

important consideration in algorithmic design is the

computational efficiency.

TABLE 1. Mean L2 Errors for variables at various

compression ratios.

Temp Wind u Wind y RH

Compression ratio (8C) (m s–1) (m s–1) (%)

50:1 0.074 10 0.104 09 0.124 74 0.532 35

30:1 0.043 75 0.054 77 0.069 92 0.305 23

20:1 0.025 11 0.031 95 0.040 69 0.167 16

10:1 0.008 86 0.009 45 0.011 30 0.038 36
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We propose to adopt a simple but efficient procedure,

previously proposed in Wang and Brummer (2003) for

Cartesian grid data, to compress icosahedral grid data

with a specified kEk‘ bound. This procedure is a simple

two-domain quantization scheme for floating point data-

sets, without bit allocation optimization. First, an empirical

minimum quantization step size that indirectly specifies the

mean L2 norm error bound is given, and a classic scalar

quantization of coefficients is performed in the transformed

domain; the magnitude of each coefficient is reduced and

updated as the quantization proceeds. When this trans-

formed domain quantization finishes, the coefficient resid-

uals are inverse transformed back to the physical domain.

A second quantization is conducted on these physical do-

main residuals, and the quantization process continues

until no residual exceeds the specified kEk‘ bound. The

minimum quantization step size for each meteorological

parameter, in transformed domain, is determined empiri-

cally from a statistical estimate of the relation between the

sizes of the quantization steps in the two domains.

Note in the above-mentioned procedure, the errors

in the physical domain are not obtained through the

computation of f (x)2 ~f q(x). Rather, they are obtained

by applying the inverse wavelet transform to the co-

efficient residual f̂ (v)2
ê
f q(v). Since the wavelet trans-

form (and its inverse transform) is linear, we have

f (x)2 ~f q(x)5W21[ f̂ (v)]2W21[
ê
f q(v)]

5W21[ f̂ (v)2
ê
f q(v)] , (2)

whereW21[ . ] is the inverse wavelet transform. This is a

more computationally efficient way to compute the

physical domain residual errors. It saves the memory

space required to keep the original data f (x), and it saves

the CPU time required to decompress and create ~f q(x).

d. Description of the entire compression scheme

Figure 2 illustrates the main components of the entire

compression and decompression processes. In the fol-

lowing paragraphs we describe the two processes and

the implementation of their main components.

The compression process starts with a grid rear-

rangement procedure that partitions an icosahedral grid

into 10 rhombi and two individual points. Two columns

of data points at the poles are losslessly compressed, and

this trivial step is omitted from the figure. For the three-

dimensional datasets on 10 rhombus grids, we apply the

following compression procedure to each of them.

First, an in-place, separable wavelet transform using

the CDF97 wavelet is applied to the three-dimensional

dataset. Then a two-domain quantization procedure,

described in section 2c, is conducted. An enhanced

zerotree-based quantization (Shapiro 1993; Said and

Pearlman 1996) is used to quantize the coefficients in the

transformed domain. This quantization approximates

the function f̂ (v) and reduces both L2 and L‘ norm

errors according to the specified minimum quantization

step size. The coefficient residuals are saved in the place

of the coefficients at the end of transformed domain

quantization. After an in-place inverse wavelet trans-

form is applied to the coefficient residuals, a quadtree

(Finkel and Bentley 1974)-based quantization is applied

to the residuals in the physical domain to further reduce

theL‘ normerror, until a specified precision requirement

is satisfied. For computational efficiency, we integrated

an efficient variable length coding scheme into the quan-

tization procedure, which allows us to skip the computa-

tionally intensive entropy encoding step.

As a result of the efficient implementation of the en-

coder components described above (in-place wavelet

transform, efficient physical domain residual computa-

tion, and the integrated variable length coding), the

proposed encoder runs efficiently for high-resolution

icosahedral grid datasets. For example, it takes less

than 80 s to compress a model variable on a G9 (15 km)

icosahedral grid (;2.6 million grid points) of 64 vertical

levels on an i7 processor Linux machine that translates to

an encoder throughput of;8.0MiBs21 (or;8.4MBs21).

In addition, the memory-conserving design and imple-

mentation also makes it possible to create a multithreaded

version of the software that encodes multiple rhombi in

parallell. Depending on hardware configuration, a multi-

threaded compression software can potentially increase

the present throughput significantly.

As mentioned in the previous subsection, the

encoding scheme does not include any rate-distortion

optimization procedure, which finds the optimal bit

allocation for the two-domain quantization procedure.

This optimization process is avoided due to its high

computational expense. In anticipation of an ever-

increasing data volume for high-resolution global

models, we decided not to conduct this optimization in

the compression process. Instead, empirical thresholds

are used to conduct bit allocation for quantizations in

the two domains during the encoding process.

The decompression process is largely symmetric to the

compression one. For each rhombus grid, first a zerotree

dequantization is conducted to restore the quantized

wavelet coefficients and an inverse wavelet transform is

applied to finish wavelet decompression of the dataset;

then a quadtree dequantization is conducted to restore

the physical domain residuals and the residuals are

added back to the data decompressed in the first step.

Finally, we mosaic the 10 decompressed rhombus

datasets back to the icosahedral grid, together with
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FIG. 3. (top) Original temperature field at surface (K), (middle) 50:1 compressed same field,

and (bottom) difference image.
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FIG. 4. (top) Original relative humidity field at surface (%), (middle) 50:1 compressed same

field, and (bottom) difference image.
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losslessly decompressed data at the two pole points, to

reconstruct the entire dataset.

The decompression process takes a slightly less amount

of time than the compression process. The compression

and decompression software are implemented in C11
and are compiled with GNU g11 compiler, version 4.2,

with an optimization flag 2O2.

3. Data compression assessment

We apply the compression technique described above

to the model output generated by the FIM weather

forecast model. FIM is a flow-following, finite-volume

global model horizontally discretized on an icosahedral

grid. It was developed by NOAA’s Earth System Re-

search Laboratory (ESRL) and is described in Lee and

MacDonald (2009), Bleck et al. (2010), Lee et al. (2010),

and Bleck et al. (2015). FIM is currently running daily at

ESRL at a 30-km horizontal resolution and 64 vertical

levels. During hurricane season, FIM is also run at higher

horizontal resolutions, up to 10km in horizontal spacing.

In this data compression experiment, we use the

30-km datasets on an icosahedral grid at grid level l5 8.

Three experiments are conducted to assess the perfor-

mance of data compression: 1) evaluating overall fidelity

of the compressed datasets at various compression ratios,

2) assessing compression ratios for given precision re-

quirements, and 3) comparing the compression perfor-

manceof the proposedmethod to that of theGRIB2 (with

JPEG200 packing option) at the same given precisions.

The model variables involved in the experiments are tem-

perature t; wind components u, y; and relative humidity r.

a. Fidelity of the compressed datasets at given
compression ratios

First, for given compression ratios, we assess the

quality of the compressed datasets using the mean L2

norm error metric. For data visualization purposes, the

mean L2 error gives a good estimate of the overall fi-

delity of compressed datasets.

Table 1 lists the mean L2 norm error for various data-

sets at different compression ratios. As expected, at

the same compression ratio, smoother fields have

smaller errors. In general, the mean L2 norm errors are

small for all variables at significant compressions.

Higher overall fidelity is required to display global

model data on high-resolution large size displays. To

verify and confirm the fidelity of the compressed data-

sets, we display the compressed FIM datasets on a spe-

cial global spherical display—Science on a Sphere (SOS;

http://sos.noaa.gov), which has a display area close to

15 000 in.2. On the spherical display, we can compare

each cell for any differences.

All images in the following presentation are rendered

directly from icosahedral grid data to a cylindrical

equidistant projection with no interpolations involved.

The Voronoi cell mesh is not drawn, since at this high

resolution (655 362 cells over the globe), the mesh will

be too dense to allow visualization of the data beneath it.

Figures 3 and 4 show images of surface temperature t

and relative humidity r before and after compression and

their differences. These images are what an SOS system

uses to project global images to its spherical display.

From these images, we observe that, even after sig-

nificant compressions (50:1 compression ratio), model

TABLE 4. Compression ratios and mean L2 errors of GRIB2 and the proposed method (kEk‘ 5 0:05).

Temp Wind u Wind y RH

Compression scheme (8C) (m s–1) (m s–1) (%)

Compression ratio

Proposed method 13.55:1 13.01:1 11.84:1 7.82:1

GRIB2 JPEG2000 10.12:1 8.52:1 8.38:1 7.05:1

Mean L2 error

Proposed method 0.013 576 0.015 814 0.015 507 0.019 193

GRIB2 JPEG2000 0.028 864 0.028 866 0.028 867 0.026 520

TABLE 2. Compression ratios for variables at specified precisions

(L‘ errors).

Temp Wind u Wind y RH

Precision (8C) (m s–1) (m s–1) (%)

0.0625 15.1:1 14.5:1 12.1:1 7.9:1

0.125 22.9:1 21.3:1 17.2:1 9.7:1

0.25 37.2:1 33.2:1 25.8:1 12.6:1

0.5 73.9:1 55.2:1 42.6:1 18.6:1

1.0 137.6:1 96.5:1 72.2:1 28.1:1

TABLE 3. Mean L2 errors for variables at specified L‘ errors.

Temp Wind u Wind y RH

L‘ errors (8C) (m s–1) (m s–1) (%)

0.0625 0.017 96 0.019 16 0.015 86 0.017 90

0.125 0.032 92 0.035 43 0.030 04 0.036 25

0.25 0.057 62 0.063 46 0.054 99 0.072 43

0.5 0.108 60 0.108 93 0.102 45 0.159 43

1.0 0.173 91 0.178 30 0.171 60 0.296 39
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visualization products show little visual differences.

Examining the difference plots, we notice that differences

are mostly in the form of low-magnitude noise. These

compressed datasets retain adequate fidelity for many

applications, such as visualization of numericalmodels on

meteorological workstations and dissemination of severe

weather information to the public via the Internet, to

mobile devices, and to the television network.

b. Compression performance with guaranteed
precisions

For most datasets that need to be further processed and

diagnosed numerically, it is required that the compressed

data maintain certain precisions. The proposed compres-

sion technique can encode a dataset to a specified pre-

cision; that is, no grid data within the dataset will have a

compression error that exceeds a specified precision

threshold value.

Table 2 shows the compression ratios for different

model variables at various specified precisions (L‘ errors).

The mean L2 errors are usually much smaller com-

pared with L‘ errors, especially for a compression

scheme using two-domain (transform and physical do-

mains) quantizations. Table 3 shows the mean L2 errors

of the datasets after precision-controlled compression.

Overall, significant compressions are achieved with

reasonable precision requirements, especially for those

variables that are smooth and stationary in space. Even

for the variables that are less smooth and significantly

less stationary, such as relative humidity, good com-

pressions are achieved with some practical precision

requirements.

c. Comparison to GRIB2 compression

GRIB is a compact data format commonly used in

meteorology to store and transmit weather data. Based on

its first edition (GRIB1), a newer version (GRIB2) was

introduced by the end of last century. GRIB2 allows a

more general and flexible format to encode metadata and,

more importantly, it allows several modern compression

schemes to be used in packing (lossless encoding)

precision-specified binary data.

The most advanced packing option available in the

GRIB2 format is the lossless wavelet compression in

JPEG2000. In the following, we compare the compres-

sion performance of the proposed compression scheme

to that of the GRIB2 format with JPEG2000 packing

scheme.

SinceGRIB2 is not available for unstructured grid, we

first interpolate the icosahedral grid data to a global

Cartesian grid with similar 30-km resolution, then ap-

ply GRIB encoding to the data. To be fair, any errors

caused by interpolation will not be accounted for in the

comparison.

Table 4 compares the compression ratios and mean

L2 errors of the proposed compression method and

GRIB2 at the same specified precisions. This brief

comparison shows that the proposed method achieves

better compression, more noticeable for temperature

and wind components. Table 4 also shows that the

proposed method that uses the two-domain quanti-

zation scheme has smaller mean L2 errors compared

to GRIB2compression, which uses the rounding plus

lossless wavelet compression scheme (JPEG2000), at

the same specified L‘ errors (precision). This result is

expected and could be explained statistically. Assuming

uniform distribution of function values within each

rounding interval, it is straightforward to estimate the

meanL2 error for the rounding plus lossless compression

scheme, by the following mathematical expectation: 
1

0:5t

ð0:5t
0

x2 dx

!1/2

5

ffiffiffi
3

p

6
t ¼: 0:288 675t , (3)

where t is the rounding interval, which equals twice the

L‘ error. For the experiment, t5 0:1, and thus the

expected mean L2 error is approximately 0.028 867 5.

The numerical results for t, u, y are close to this theo-

retical value. The mean L2 error for r is a little smaller,

because values of relative humidity at the top of the

atmosphere are near zero, which does not follow the

assumed uniform distribution of variable values within

each rounding interval.

The two-domain quantization scheme also produces

a smoother reconstructed function compared to the

rounding plus lossless scheme. Figure 5 gives a hypo-

thetical example of two reconstructed functions pro-

duced by the two-domain quantization scheme (blue

dashed curve) and by the rounding plus lossless coding

scheme (brown dashed curve), against the original func-

tion (black solid curve). The background grid mesh

indicates the floors and ceilings for the rounding operation.

FIG. 5. Illustration of reconstructed functions with different

compression schemes. Black solid curve represents the original

function, blue dashed curve represents the two-domain quantiza-

tion scheme, and brown dashed curve represents the rounding plus

lossless coding scheme.
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The example illustrates the difference between the

reconstructed functions by the two compression schemes.

4. Model runs with original and compressed initial
conditions

Model initial condition datasets are often archived

or transmitted to different computer systems to run

numerical models for operational or research purposes.

To compress these datasets, it is important to un-

derstand how data compression impacts the fidelity of

their simulation results. In this experiment, we select two

cases, one in the fall of 2012, during the life span of Hur-

ricane Sandy, and one in March 2014, during a spring

snowstorm.

FIG. 6. Comparison of 120-h forecasts initialized with original and compressed kinetic fields. (top) 120-h forecast of u, y with original

initial condition; (middle) as in (top), but with compressed initial condition; and (bottom) the difference images of the two forecasts. FIM

runs at 30-km resolution, with the initial condition at 0000 UTC 28 Oct 2012 (Hurricane Sandy case).
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Both cases impacted the continental United States

with strong sustained surfacewinds andheavyprecipitations.

Numerical simulations of the tracks and intensities of those

fast-evolving storm systems are critical to the forecasts

of these high-impact weather events. They are also good

cases to test the impact of compression of initial condi-

tions on the numerical simulations.

The experiment is conducted as follows. First, we save

the initial model kinetic state, wind components u, y. We

compress the model variables at a specified precision to

obtain a new, compressed model state û, ŷ. Then, we run

FIMwith both sets of initial conditions to 120h. After the

model runs finish, we visually and numerically examine

and compare the forecast results from both runs.

FIG. 7. Comparison of 120-h forecasts initialized with original and compressed kinetic fields. (top) The 120-h forecast of t and pre-

cipitation with original initial condition; (middle) as in (top), but with compressed initial condition; and (bottom) difference images of the

two forecasts. FIM runs at 30-km resolution, with initial condition at 0000 UTC 28 Oct 2012 (Hurricane Sandy case).
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a. Hurricane Sandy case

Tropical Cyclone Sandy was the 18th named tropical

cyclone of the 2012 Atlantic hurricane season (1 June–

November 30). The cyclone formed in the central

Caribbean on 22 October 2012 and intensified into a

hurricane as it tracked north across Jamaica, eastern

Cuba, and the Bahamas. Then, it moved northeast of the

United States until turning west toward the mid-Atlantic

coast on 28 October. Sandy transitioned into a post-

tropical cyclone just prior to moving onshore near At-

lantic City, New Jersey. Associated with Sandy, heavy

rainfall occurred in Maryland, Virginia, Delaware, and

New Jersey, and widespread heavy snow in the Appala-

chian Mountains from western North Carolina north-

eastward through southwestern Pennsylvania.

The model simulation for this case was initialized at

0000 UTC 28 October 2012. The initial u, y fields at

0000 UTC 28 October 2012 are compressed with L‘

error ,0:0625.

Figures 6 and 7 show a comparison of 120-h forecasts of

u, y, t, and precipitation, and the differences of forecasts

when initialized with original and compressed initial data.

There are small differences between the numerical

forecasts with the original and compressed initial kinetic

state, and the dynamic structures of the atmospheric

circulation (temperature and wind fields), after 120h of

numerical simulation, are very similar.

To further examine the error evolution with time,

Table 5 lists the mean L2 errors for t, u, y, and geo-

potential height h, at different forecast times.

b. A spring storm case

The spring storm case was associated with a low

pressure system that developed off the Florida coast on

24March 2013. This systemmoved quickly as it made its

way to the Northeast on 25 March and rapidly in-

tensified as it neared the New England offshore waters.

Precipitation associated with the storm occurred in the

mid-Atlantic and New England coastal areas during

the morning of 25 March and continued through the

overnight hours, ending by the early morning on

26March. An area of 4–7 in. of snowwas reported across

southern Delaware and parts of extreme southern New

Jersey. Winds associated with the system were blustery

with gusts generally in the 35–45mph range.

The model simulation for the case was initialized at

0000 UTC 24 March 2014. The same experiment pro-

cedure is repeated for this case.

Results are shown in Table 6, and Figs. 8 and 9. Quite

similar results to the Hurricane Sandy case are obtained

for this case.

c. Comparison of 500-hPa height anomaly
correlation coefficient scores

To further assess the impact of the compression of initial

datasets on the model forecast skills, we compute the

anomaly correlation coefficients of the 500-hPa height

fields for FIM forecasts with original and compressed ini-

tial datasets. The anomaly correlation coefficient (ACC), a

coefficient of correlation between the forecast and analysis

relative to the climate mean, is defined as

ACC5
( f 2 c)(a2 c)

( f 2 c)2 (a2 c)2
h i1/2 , (4)

where f and a are forecast and analysis, respectively; and

c is the corresponding climate mean.

For the experiment, we use the analysis and climate data

produced by Global Forecast System (GFS) of the Na-

tional Centers for Environmental Prediction (NCEP). We

compute the ACC scores for both Hurricane Sandy and

the 2014 spring snowstorm cases, at five forecast times, and

they are listed in Tables 7 and 8.

It appears that at least for the two experiment

cases, there are negligible differences of ACC scores

between the forecasts with original and compressed

initial conditions.

d. Remarks on the experiment results for two test
cases

From the above-mentioned experiments, we have the

following observations:

TABLE 5. Mean L2 norm differences between the model runs

with original and compressed initial kinetic fields (Hurricane

Sandy case).

Forecast time Temp Wind u Wind y Height

(h) (K) (m s–1) (m s–1) (m)

24 0.090 74 0.147 37 0.144 99 0.348 84

48 0.127 98 0.226 82 0.222 53 0.480 97

72 0.167 77 0.294 07 0.299 94 0.619 95

96 0.219 47 0.387 58 0.380 57 0.894 10

120 0.269 69 0.475 03 0.479 88 1.215 37

TABLE 6. Mean L2 norm differences between the model runs

with original and compressed initial kinetic fields (spring snow-

storm case).

Forecast time Temp Wind u Wind y Height

(h) (K) (m s–1) (m s–1) (m)

24 0.092 42 0.152 36 0.150 58 0.357 06

48 0.124 64 0.225 36 0.221 80 0.479 03

72 0.163 02 0.299 62 0.295 80 0.643 66

96 0.207 96 0.381 61 0.377 48 0.854 83

120 0.257 54 0.466 94 0.456 57 1.194 46
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(i) Numerical simulations reach virtually the same

state in 5-day forecasts with original and com-

pressed initial kinetic conditions.

(ii) The differences between the two simulations are

rather small, and the relative differences (the differ-

ences normalized to the magnitude of the variable)

are similar for different model variables.

(iii) The differences grow with simulation time. The

growth rates are mostly linear, and occasionally

between linear and quadratic.

(iv) For the forecasts up to 120 h with original and

compressed initial conditions, there are negligi-

ble differences in anomaly correlation coefficient

scores. It indicates that the impact of compression

FIG. 8. Comparison of 120-h forecasts initialized with original and compressed kinetic fields. (top) The 120-h forecast of u, y with

original initial condition; (middle) as in (top), but with compressed initial condition; (bottom) difference images of the two forecasts. FIM

runs at 30-km resolution, with initial condition at 0000 UTC 24 Mar 2014 (2014 spring snowstorm case).
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of initial conditions on model forecast skill is

minimal.

(v) In a sense, this experiment is more about the model

sensitivity to the perturbation of initial condition

than the compression performance of model initial

condition. From this perspective, FIM is stable

with a small perturbation to its initial condition.

It is apparent that these observations are model de-

pendent, closely related to themodel numerics and physics

parameterization schemes. Nonetheless, experiment re-

sults give us some guidelines for what we could expect

from other global weather models, in terms of their nu-

merical sensitivities to small perturbations in initial con-

ditions caused by compression.

FIG. 9. Comparison of 120-h forecasts initialized with original and compressed kinetic fields. (top) The120 h forecast of temperate t and

precipitation with original initial condition; (middle) same forecast with compressed initial condition; and (bottom) the difference images

of the two forecasts. FIM runs at 30-km resolution, with initial condition at 0000 UTC 24 Mar 2014 (2014 spring snowstorm case).
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5. Discussions and summary

We proposed a wavelet compression technique for

native datasets on icosahedral grids. The experiments

have shown that the technique achieves good compres-

sion performance for both classic lossy data compression

and precision-controlled lossy data compression.

The major differences between the proposed data

compression technique and existing ones are as follows:

1) the native icosahedral grid datasets are compressed

directly, as opposed to being interpolated to the Carte-

sian grid and then compressed; and 2) a two-domain

quantization scheme is applied, in which a transformed

domain quantization efficiently reducesL2 andL‘ errors

and a physical domain quantization satisfies the L‘ error

requirement.

For many visualization applications, using classic

lossy wavelet compression, without a strict precision

specification, the proposed compression technique can

achieve dramatic data compressions. It has been dem-

onstrated that a 50:1 or higher compressions can be

achieved for many model variables and 30:1 or higher

compressions for other variables. At this compression

level, no noticeable visual difference appears in ren-

dered images.

For most meteorological applications, precision re-

quirements are specified for compressedmodel variables.

Significant compressions are achieved for commonly used

precision requirements. For example, at 0.0625 precision

threshold, compression ratios of 15.1:1, 14.5:1, and 7.9:1

are achieved for temperature, zonal wind component,

and relative humidity, respectively.

Compared to the GRIB2 with JPEG2000 packing

option, which is currently only available for Cartesian

grid data, the proposed technique achieves a better

compression with the same L‘ norm error specifica-

tion. In addition, as we have indicated earlier, at the

same level of L‘ norm error, the proposed compres-

sion technique has a smaller mean L2 norm error,

close to one-half of that of the GRIB2 compressed

data.

The numerical experiment conducted in this research

also includes a preliminary assessment of the impact of

compressed initial conditions on numerical simulations.

This is the first attempt of such an experiment that is

designed to answer the question of whether a precision-

controlled lossy data compression can be used to com-

press data archives that may potentially be used as initial

model states. The preliminary results indicate that the

answer is promising.

Following the same grid arrangement strategy and

data compression scheme, the proposed technique can

be extended to other unstructured grids, such as stag-

gered icosahedral grids and cubed-sphere grids. For

example, for a staggered icosahedral C grid, the grid

points on the cell edges within a rhombus can be arranged

into three separate rhombus lattices, according to their

triangular grid lines. After this grid rearrangement, each

rhombus grid can be treated as a Cartesian lattice and the

rest of the proposed compression technique can be ap-

plied in the same way.

For future research, a more concrete and detailed as-

sessment of the proposed compression technique is de-

sired to further improve its performance. Specifically, we

want to investigate how to preprocess model data for

better compression, especially for vector fields; we also

want to understand how and at what level of compression

meaningful loss of information content occurs, which

could impair the numerical simulation of weather activ-

ities. More model initial condition variables will be

compressed and tested to assess their impact on numer-

ical simulations. Computationally, it is desirable to

develop a more sophisticated but still practical bit allo-

cation algorithm for quantizations in the transformed and

physical domains. It is also desirable to parallelize the

compression software to speed up the encoding and

decoding process.
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